Energy Savings

Monitoring the use of compressed air within a facility.
To determine the optimum number of compressors that need to be in operation at any given time so that the facility load is satisfied, a measuring station that includes a controller(D300) and a consumption sensor (C400) is installed so that the consumption of compressed air is monitored continuously and automatically determines the optimum number of compressors to handle the facility demand.

Power and Energy Compressed Air

Power plants typically require scheduled maintenance to be performed on the turbine generators. The maintenance outage duration is extended by up to sixty (60) hours or more to allow the turbine to cool down. This results in extending the outage duration in both generation time and reduced revenues for this extended period. In today’s Power Industry, the increased demand for power places an even greater demand on the power generator to minimize downtime associated with plant maintenance outages. By developing ways to reduce the outage time, a plant can maximize its generation output, which translates into maximum availability and profit.

Power Generation Application
Forced draft cooling air is supplied to the H.P.and L.P. housing from a compressed air main pipeline running adjacent to the turbine generator. The H.P. and L.P. housings are supplied with forced air via two lines that are tapped off the compressor air mains. The air needs to be injected slowly and increased to its maximum flow slowly to reduce unnecessary thermal stress to the turbine blades. The use of symmetrical air inlets with entries at the top and bottom of the turbine casing provides uniform cooling by proportioning the flow to the top and bottom casing halves. It is possible to eliminate the differences in temperature between the top and bottom of the turbines which arise during natural cooling and could cause turbine damage. It is necessary to accurately measure the flowrate of the compressed air during this cool down period to minimize thermal stress and maximize the reduction of the cooling time.

Application parameters
User Various steam/electric stations
Media Compressed air
Line Size 3 inchSch. 40
Flow Range 0.5 to 20 SCFM
[0.01 to 0.57 NCMM]
Pressure Range 10 psig [0.69 bar(g)]
Temperature Range 40º to 100ºF
[4.4º to 37.8ºC]

Dew Point Measurement Applications in Trains

Pneumatic systems in railway applications are vulnerable to water condensation as a result of the cooling of compressed air. This water tends to cause corrosion, degrade lubricants and freeze in cold weather, causing malfunction and damages in brake systems and other pneumatic devices as well as pneumatic components (cylinders, valves). For this reason regular measurement of dew point is essential.

Sigma provides a user friendly handheld dewpoint meter HP300 for these measurements and increased operational safety.